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Abstract— In creating web pages, books, or presentation slides, 

consistent use of tasteful visual style(s) is quite important. In this 

paper, we consider the problem of style-based comparison and 

retrieval of illustrations. In their pioneering work, Garces et al. 

[2] proposed an algorithm for comparing illustrative style. The 

algorithm uses supervised learning that relied on stylistic labels 

present in a training dataset. In reality, obtaining such labels is 

quite difficult. In this paper, we propose an unsupervised 

approach to achieve accurate and efficient stylistic comparison 

among illustrations. The proposed algorithm combines 

heterogeneous local visual features extracted densely. These 

features are aggregated into a feature vector per illustration 

prior to be treated with distance metric learning based on 

unsupervised dimension reduction for saliency and compactness. 

Experimental evaluation of the proposed method by using 

multiple benchmark datasets indicates that the proposed 

method outperforms existing approaches. 

Keywords- Local image feature, illustration style tag, 

illustration style feature, unsupervised distance metric learning. 

I.  INTRODUCTION 

Stock illustrations (or clipart) are used daily in web pages, 
presentation slides, advertisement leaflets, and other media. 
Some of these illustrations are provided for a fee, while others 
are available for free, for example, as a part of a productivity 
software license, or as a public-domain repository of 
illustrations. Increasing number of such illustrations has 
created a demand for easy-to-use and effective methods to 
find illustrations users want. 

Typically, a clipart collection is organized hierarchically, 
by occasion, season, characteristic object included, etc. Or, it 
may be searched. Search by keywords, however, requires 
careful, consistent labeling of a large number of illustrations. 
Certain clipart repository do offer search based on similarity 
of illustrations. For example, Microsoft’s repository allows 
you to find clip arts similar to the one you present.  

A search for “similar” visual content may employ 
techniques from well-studied content-based image search 
algorithms (e.g., [1]). These algorithms compare images 
mostly based on shape of objects contained in the image. 
Other features, such as color and texture may also be 
employed. For example, given an illustration of a human 
figure, these algorithms would try to find illustrations 
including human figure. But such a search may be less useful 

if one wishes to find illustrations having the same artistic style 
(e.g., black and white, silhouette, art-nouveau), but containing 
different objects (e.g., an iris, instead of a woman).  

Relatively small number of work exist that deal with 
retrieval or recognition of illustrations or drawings. Most of 
previous work in the area of illustration and/or drawing 
retrieval focused on objects contained in, not style of, the 
illustrations. Simple geometrical features and their topological 
relationship are used for sketch-based retrieval of art work 
[3][4] and technical drawings [5]. Features extracted from 
vector representations of line drawings are used in these work. 
In a more recent work on vector graphics clip art retrieval, [1] 
used both vector graphic and image representations of an 
illustration for feature extraction; color and texture features 
are extracted from image representation, while topology and 
geometry are extracted from vector graphic representation. 

Garces et al. [2] introduced the algorithm for illustrative 
style comparison that relies on supervised learning of labels. 
The algorithm extracts multiple heterogeneous global image 
features from each illustration. Using a set of illustrations 
labelled with styles as the corpus, the algorithm then applies 
supervised learning to produce refined similarities among 
illustrations. Similar supervised approach has been taken by 
Karayev, et al. [6] in an effort to recognize styles in 
photographs. In reality, however, such supervised approaches 
may have limited applicability. Only a very small subset of 
illustrations is labeled with style tags. Furthermore, style tags 
are not shared among existing collections. It is thus important 
to develop an illustrative style descriptor that does not rely on 
supervised learning employing stylistic labels. 

In this paper, we propose a novel algorithm to derive style 
descriptors for illustrations without relying on supervised 
learning. The algorithm assumes, as its input, illustrations in 
array-of-pixels representation. If the illustration is in vector 
graphic representation (e.g., Scalable Vector Graphic (SVG) 
format), it is converted into array-of-pixels format prior to 
feature extraction. The algorithm then densely samples local 
image features from a multi-resolution image pyramid 
representation of the illustration. The local image features are 
then aggregated into a feature vector per illustration, prior to 
be treated with a dimension reduction algorithm that achieves 
unsupervised distance metric learning of the illustration 
feature space. An experimental evaluation using a pair of 



benchmarks showed that our descriptor significantly 
outperforms the one proposed in [2]. 

The rest of this paper is organized as follows. Section II 
presents the proposed algorithm. Experiments and their results 
are presented in Section III, followed by summary and 
conclusion in Section IV. 

II. ALGORITHM 

A. Overview 

Our proposed illustration style comparison algorithm has 
two major attributes; use of local visual features and 
unsupervised distance metric learning. Fig. 1 illustrates our 
style similarity comparison algorithm.  

The proposed algorithm characterizes a style of an 
illustration by using a set of densely sampled, local, low-level, 
statistical image features. This is different from an approach 
by Garces et al. [2], which used heterogeneous set of global 
image features. We combine two local features; Local Binary 
Patterns (LBP) [7] to describe texture and HSV histogram 
computed in Hue-Saturation-Value (HSV) color space. A set 
of features, either of LBP or HSV, is densely extracted from 
an image of illustration. The set of features is then aggregated 
into a feature vector per image via Fisher Vector (FV) 
aggregation [8]. FV is one of the best performing local feature 
aggregation methods for image recognition [9]. As the FV 
aggregation ignores position of each local feature, FV-
aggregated features have certain invariance to shape 

deformation, a property desirable for comparison of 
illustration styles (but not necessarily for certain type of object 
recognition). The FV-aggregated LBP features, FV-LBP, and 
FV-aggregated HSV features, FV-HSV, are then fused into a 
single, high-dimensional (~18K dimensions) feature per 
image by simple concatenation of the two feature vectors.  

We then perform unsupervised dimensionality reduction 
on the concatenated vector by using a combination of Kernel 
PCA (KPCA) [10] and Laplacian Eigenmaps (LE) [11]. The 
dimension reduction has two purposes; improving saliency of 
the feature for better accuracy in style similarity comparison, 
and improving computational efficiency of image-to-image 
style comparison. To further reduce memory footprint for 
large-scale retrieval, we quantize each element of the 
dimension-reduced feature vector by using small dynamic 
range integer representation.  

B. Multi-Scale Local Feature Extraction 

1) Texture feature 
We employ LBP to describe texture of illustration. An 

LBP is a histogram computed locally at a square Region-Of-
Interest (ROI) of image having size NR×NR. Experiments 
below use NR=25 whose value is chosen based on preliminary 
set of experiments. The histogram is generated from NR

2 
integer values computed at every pixel in the ROI. The integer 
value LBPp for a pixel p is computed as an 8 bit string, whose 
range is [0, 255] for decimal notation, from a 3×3 pixel region 
centered around p. NR

2 (e.g., 252=525) integer values are 
accumulated into a histogram having 28=256 bins, and the 
histogram is normalized by its L1 norm. 

To make the original LBP feature more compact and more 
robust against background and scale change of illustrations, 
we add the following three modifications to the original LBP. 
First, we exclude 8 bit strings whose number of bit changes 
exceeds 5 from constructing the LBP histogram. This 
modification reduces the number of bins for LBP histogram 
from 256 to 28. Secondly, a pixel p is omitted from voting for 
LBP histogram if differences of pixel values among p and its 
neighbor pixels are less than 5. By this modification, image 
regions having almost no textures, e.g., background of an 
illustration, are excluded from LBP computation. Thirdly, we 
extract multi-scale LBP for robustness against scale change of 
illustration. Specifically, an input illustration is first resized so 
that its longer side becomes 320 pixels. The resized image is 
down-sampled twice to generate an image pyramid having 
three layers, whose longer sides are 320, 160, and 80 pixels 
respectively. For each layer, ROIs having size 25×25 pixels 
are densely sampled at an interval of 8 pixels. We utilize 
integral histogram [12] to efficiently compute LBP histograms 
for ROIs. 

2) Color feature 
Our local HSV histogram has an overall dimensionality of 

36, which is divided into 8, 10, and 18 bins, respectively, for 
Hue (H), Saturation (S), and Value (V) components. ROIs for 
HSV histograms are sampled in the same manner as for LBPs. 
That is, ROIs with 25×25 pixels are densely sampled at every 
8 pixels on three layers of an image pyramid. In HSV color 
space, V component corresponds to gray-level intensity of an 
image. As the V indirectly captures thickness of lines, shade, 
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or shadows, and density of lines etc., we give it more 
quantization levels, i.e., 18, than the other two color 
components. The HSV histogram is normalized by its L1 
norm. 

When we examine pixel values of illustration images 
represented in HSV color space, we notice several 
characteristics. Among illustration images, pixel values for S 
and V components tend to fall in either lowest (0.0) or highest 
(1.0) extremes of the range. This is not like images of natural 
scenes in which pixel values in HSV color space is distributed 
more evenly. We thus add two dedicated bins at the lowest 
(0.0) and highest (1.0) values of S and V components, and 
divide the rest of bins having uniform intervals. Also, value of 
H component is unreliable if values of S or V are very small. 
We thus omit pixels from histogram computation when 
S < 0.02 or V < 0.02. As with LBP, we use integral histogram 
for efficiently computing HSV histograms for ROIs. 

C. Feature Aggregation 

For each local feature (i.e., LBP or HSV), a codebook for 

FV aggregation is learned by using Gaussian Mixture Model 

(GMM) clustering performed on 250,000 local features 

randomly selected from all the local features extracted from 

the training set of images. We learn Nv=128 clusters, or 

codewords. Dimensionality of an FV-aggregated feature 

becomes 2×Nv×Nd for each image where Nd is the 

dimensionality of local feature (Nd=28 for LBP and Nd=36 for 

HSV). Therefore, FV-LBP vector has the dimension 7,168 

and FV-HSV has the dimension 9,216.  

After the aggregation, the FV-aggregated feature goes 

through power-normalization followed by L2 normalization, 

as in [8]. Power normalization defined in (1) is applied to the 

FV-aggregated feature f;  

  
( ) | |f sign f f   (1) 

We use α=0.3 for FV-LBP and α=0.1 for FV-HSV. 
Finally, the FV-LBP and FV-HSV vectors, both of which 

are power normalized and then L2-normalized, are 

concatenated. The concatenated vector is then normalized by 

its L2-norm to become raw Fused FV (FFV) illustration style 

feature vector. The raw FFV feature vector has 

dimensionality of ND=7,168+9,216=18,432 before the 

unsupervised similarity metric learning involving dimension 

reduction described in the next section. 

D. Unsupervised Similarity Metric Learning 

To improve accuracy and efficiency of image-to-image 
style comparison, we perform unsupervised dimensionality 
reduction on the FFV features by using KPCA and LE. For 
both KPCA and LE, we use all the illustrations (NI =4,591) in 
the database for learning improved similarity metric. We use 
KPCA with dot kernel, which linearly project a high 
dimensional (i.e., ND =~18K dims.) FFV vectors onto a lower 
dimensional (e.g., NK =512 dims.) subspace.  

In an attempt to further improve retrieval accuracy, the 
KPCA-projected FFV features are projected onto a lower 
dimensional (e.g., NL =128 dims.) by using LE. LE finds non-
linear projection onto a subspace where diffusion distance in 

the original feature space is preserved as L2 (or Cosine) 
distance. LE-projected FFV features are compared by using 
Cosine similarity to generate retrieval results.  

E. Quantization 

Dimensionality reduction described above produces more 
compact FFV features (e.g., 128 dims.) than raw FFV features 
(e.g., 18,432 dims.). Memory footprint of dimension-reduced 
FFV feature is still significant, as it is real-valued; assuming 
4 Byte floating point representation, a 128-dimensional FFV 
descriptor occupies 4×128=512 Byte per illustration. We try 
to reduce its memory footprint further by using quantized, 
small dynamic range integer representation for each element 
of the vector. To efficiently handle a large scale dataset, small 
memory footprint is essential.  

We try a simple approach, which is to represent each 
element of dimension-reduced FFV descriptor by using small 
dynamic range integer. A set of feature vectors processed by 
KPCA and LE tend to distribute around the origin of its 
feature space [13]. This “sphered” distribution of the 
dimension-reduced features is discretized by using the 
following method. The floating point value fd of d-th 
dimension of the FFV feature vector is converted into an 
integer value id having 2n quantization levels whose range is 

1 1[ 2 ,2 1]n n

nR      by using the following equation, 
  

1round 2
3

n d

di


 
  

 

f
  (2) 

where round() denotes a rounding function and the standard 
deviation σ is computed with respect to all dimensions of all 
the FFV features. If id produced by (2) is out of the range Rn, 
it is clipped to its boundary values. Using the standard 
deviation σ makes the discretization somewhat robust against 
outliers. If we use n=8, that is, 28=256 quantization levels, a 
feature vector would occupy 128 Byte per illustration. 

III. EXPERIMENTAL EVALUATION 

A. Benchmark database 

To evaluate effectiveness of the proposed algorithm, we 
use the benchmark dataset supplied by Garces et al. [2]. This 
dataset contains 4,591 illustrations with a wide range of styles. 
Fig. 2 shows examples of illustrations in the dataset. Out of 
the 4,591 illustrations, a set of 1,000 samples, which we call 
“MTurk”, were collected from the Art Explosion dataset [15] 
and a set of 3,591 samples, which we call “MS”, were 
collected from a set of clipart included in the Microsoft Office. 
The set of 4,591 samples is divided into two subsets, i.e., a 
train set for supervised learning and a test set for evaluation. 
Since our algorithm is fully unsupervised, i.e., no labels are 
required, we use all the images in the benchmark to learn a 
codebook for FV aggregation and to learn a subspace for 
dimensionality reduction.  

We use two evaluation protocols. The first protocol is 
called triplet testing which was used in [2]. Given a triplet of 
three illustrations aI , bI and cI , where aI  has more similar 
style to bI than to cI , a triplet test is considered as success if 

bI  is ranked higher than cI  in the retrieval result for the query 



.aI  Accuracy of the triplet testing is a success rate obtained 
through 10,633 triplet tests.  

As the second evaluation protocol, we use mean Average 
Precision (mAP). To compute mAP, we use the set of 3,591 
images in the MS dataset that has label information. The set 
of 1,000 images in the MTurk dataset is used as distracter, that 
is, they are considered as incorrect in the retrieval results. 
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Fig. 2. Examples of illustrations from a benchmark dataset used in [2]. 

B. Effectivness of Similarity Metric Learning 

Fig. 3 shows effectiveness of dimension reduction of FFV 
feature, where “FFV” plots the accuracy of raw FFV feature 
without reduction. “FFV (KPCA)” and “FFV (KPCA+LE)” 
plot the accuracy of FFV feature projected onto a lower 
dimensional space, where the latter method first project a raw 
feature vector onto 512-dimensional sub-space with KPCA 
and the dimension is further reduced by LE. We can observe 
that these dimensionality reductions significantly improve 
retrieval accuracy. “FFV (KPCA)” with 256 dimensions 
increases mAP score by about 0.04 compared to “FFV”. “FFV 
(KPCA+LE)”, which captures non-linearity of the feature 
distribution, achieves higher accuracy by mAP=0.63 with 128 
dimensions. 

Dimensionality reduction significantly accelerates 
distance computation among FFV features. The 128-
dimensional FFV feature compressed by KPCA takes only 
about 0.002 seconds for computing distances between the 
query and the 4,591 images in the dataset. On the other hand, 
the raw 18,432-dimensional FFV feature is more time-
consuming; it takes about 0.057 seconds for computing 
distances. For a larger-scale dataset, e.g., that having 100K 
illustrations, the compact (e.g., 128-dimensional) feature 
would be essential for interactive retrieval. The computation 
times above were measured by using a single thread code run 
on a PC having two Intel Xeon E5-2650V2 CPUs and 
256 GByte of DRAM.  

C. Training Set Size and Retrieval Accuracy 

In the experiments above, we used all the 4,591 images 
contained in the benchmark dataset for unsupervised learning, 
i.e., codebook learning for FV aggregation and subspace 
learning for dimensionality reduction. In this section, we 
evaluate the influence of the number of training images on the 
retrieval accuracy. We randomly select Nt samples from the 
set of 4,591 images for learning. We run the experiment 5 
times and the average of mAP scores is used for evaluation. 

Fig. 4 plots retrieval accuracy against the number of 
training samples Nt. “FV-LBP”, “FV-HSV”, and “FFV” use 
Nt images only for learning the codebook for FV aggregation. 
Meanwhile, “FFV (KPCA)” and “FFV (KPCA+LE)” use Nt 
images for both codebook learning and subspace learning. In 
Fig. 4, for “FV-LBP”, “FV-HSV”, and “FFV”, mAP scores 
nearly unchanged for all the Nt we have experimented. We can 
confirm that the codebook learning for FV aggregation is 
insensitive to the number of training samples, whereas KPCA 
and LE are more sensitive to. Accuracies for “FFV (KPCA)” 
and “FFV (KPCA+LE)” significantly decrease at lower Nt, 
especially for the latter. It is noteworthy that dimensionality 
reduction such as KPCA and LE require sufficient number of 
training samples for finding appropriate subspaces. 

 

 
Fig.3. Reduced feature dimension and retrieval accuracy (mAP). 

 
Fig. 4. Training dataset size and retrieval accuracy (mAP). 

D. Quantization Levels and Retrieval Accuracy 

Here we evaluate the impact FFV feature quantization has 
on retrieval accuracy. Fig. 5 plots retrieval accuracies against 
the number of levels for quantization, where we set the 
dimensionalities of FFV(KPCA) and FFV(KPCA+LE) at 128. 
For both FFV(KPCA) and FFV(KPCA+LE), quantization 
with 64 levels retains retrieval accuracy of FFV features 
without quantization. The feature vector quantized by using 

64 levels (i.e., 6 bits) occupies 96 Bytes ( 6bits 128 / 8)   per 

image. About 10K such descriptor would easily fit in a 2nd (or 
3rd) level cache of a contemporary CPU for an efficient on-
cache processing. 
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Fig. 5. Quantization levels and retrieval accuracy (mAP). 

 

E. Comparison with the other Features  

In this section, we compare retrieval accuracy of our FFV 
feature with two other algorithms. First algorithm to be 
compared against is the one by Garces et al. [2]. It uses four 
global feature vectors, i.e., color, shading, texture, and stroke, 
extracted from each illustration. Distance between a pair of 
features is computed by using supervised distance metric 
learning. It uses a “weak” form of supervision based on human 
annotation of style similarity presented with a triplet of 
illustrations. The second algorithm, which we call FV-DSIFT, 
uses densely sampled SIFT feature [14] aggregated by using 
FV aggregation [8]. FV-DSIFT is used widely in image object 
recognition task. For the FV-DSIFT, we densely extracts 
1,200 SIFT features having random scales and random 
positions from an illustration. The set of SIFT features is 
aggregated by FV into a per-image feature vector for 
comparison. We use the codebook of size Nv=64 for FV-
DSIFT. Note that both proposed FFV feature and the 
algorithm by Garces (Baseline) employ color information 
extracted from HSV set of images as well as shape/texture 
feature extracted from an intensity image. FV-DSIFT, on the 
other hand, only uses shape/texture feature extracted from 
intensity image. 

Table I compares the retrieval accuracies of our FFV 
feature against the other ones. The performance of our FFV 
(mAP=0.58) significantly outperforms the baseline 
(mAP=0.36). Non-linear dimensionality reduction by LE, 
denoted by FFV (KPCA+LE), achieves further improves 
(mAP=0.63), which is the highest score we have obtained 
through the experiments. Lowest accuracy of the FV-DSIFT 
suggests that the lack of color information negatively impacts 
retrieval accuracy.  

The baseline algorithm shows high accuracy if evaluated 
by using triplet testing, especially for the MTurk dataset. 
However, its mAP score is lower than that of the FFV. We 
speculate that this is a result of overfitting of the baseline 
algorithm to supervision provided by triplets of the MTurk 
dataset. The triplets of the MTurk dataset, which were 
obtained via crowd-sourcing, is influenced by subjective 
criteria of multiple individuals. These sets of criteria are 
inherently different from the set of tags used in the MS dataset. 
Overfitting the MTurk dataset would result in a higher 

accuracy for the MTruk dataset but a lower accuracy for the 
MS dataset.  

Fig. 6 shows an example of a query and its retrieval result 
using the baseline (supervised), FV-DSIFT, and FFV, which 
demonstrates the superiority of our feature over the other ones. 
We can observe that the proposed FFV feature retrieves 
illustrations having different objects and colors but having 
similar style to the query.  

Table I. Style comparison algorithms and retrieval accuracy (mAP). 

Algorithms 
Accuracy on triplet test 

mAP 
MTurk MS 

Baseline (supervised)[2] 0.82 0.95 0.36 

Baseline (unsupervised)[2] 0.75 0.94 0.39 

FV-DSIFT [19] 0.65 0.89 0.29 

FFV (KPCA) 0.77 0.98 0.58 

FFV (KPCA+LE) 0.64 0.94 0.62 

F. Scalability 

To evaluate the scalability of our proposed algorithm, we 
performed the experiments by using datasets with larger 
number of images than the MTurk+MS dataset [2]. We 
created three larger-scale datasets by adding distractor images 
to the MTurk+MS dataset from other clipart repositories. The 
first dataset is “MTurk+MS+AE(10K)” having 10,000 images. 
It is a union of the set of 4,591 images of the MTurk+MS 
dataset and the set of 5,409 distractor images randomly 
selected from the Art Explosion dataset [15]. The second and 
the third datasets are “MS+OC(5K)” having 5,000 images and 
“MS+OC(10K)” having 10,000 images. They were created by 
adding 1,409 or 6,409 distractor images randomly selected 
from the openclipart repository [16] to 3,591 images of the 
MS dataset. As with evaluation using the MTruk+MS dataset, 
retrieval accuracies for these three “inflated” datasets are 
evaluated by using labeled images of the MS dataset and the 
other distractor images are considered as incorrect in the 
retrieval results. 

Table II summarizes retrieval accuracies for the three 
larger-scale datasets. In the table, elements of both 
FFV(KPCA) and FFV(KPCA+LE) feature vectors are 
quantized to 64 levels after dimension reduction . Retrieval 
accuracies for the larger-scale dataset are lower than that for 
the (smaller) MTurk+MS dataset. This is expected, since these 
three larger-scale datasets contains more distractor images 
than the MTurk+MS dataset. Nevertheless, retrieval 
accuracies in Table II for larger scale datasets are still 
reasonably good as mAP scores for both FFV(KPCA) and 
FFV(KPCA+LE) are over 0.5. 

Table II. Retrieval accuracies (mAP) for larger-scale datasets. 

Features 
MTurk 

+MS (5K) 
MTurk+MS 
+AE (10K) 

MS 
+OC (5K) 

MS 
+OC (10K) 

FFV(KPCA) 0.58 0.53 0.56 0.53 

FFV(KPCA+LE) 0.62 0.58 0.59 0.58 

IV. CONCLUSION AND DISCUSSION 

This paper proposed and evaluated a novel style-based 
image retrieval algorithm for illustrations. The image 
descriptor proposed, Fused Fisher Vector (FFV), has two 
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major attributes; densely sampled local visual features and 
unsupervised distance metric learning. An illustration is 
represented by a set of texture-based local features and a set 
of color-based local features. Each set is aggregated into a 
feature vector per image by using Fisher Vector (FV) [8].  

A style feature vector per illustrations, called (raw) Fused 
Fisher Vector (FFV), is produced by concatenating the two 
aggregated features. For efficacy and efficiency in 
comparison, unsupervised distance metric learning via a 
combination of Kernel PCA and Laplacian Eigenmaps is 
performed on raw FFV, followed by small dynamic range 
(e.g., 6 bit) quantization of each element of the vector.  

An experimental evaluation using multiple benchmark 
datasets showed that our proposed algorithm is more accurate 
in comparing illustration styles than the algorithm proposed in 
[2]. Memory footprint of our illustration style descriptor is 
small enough (e.g., 96 Bytes per illustration) so that a large 
scale style-based illustration retrieval system is practical.  

Multiple avenues for future exploration remain. Obviously, 
we want to further improve accuracy and efficiency of 
descriptor for illustration style comparison. For example, deep 
neural network trained on a set of illustrations, instead of 
photographic images [6], might yield a better descriptor tuned 
to illustrations. It would also be interesting to develop a set of 
style tags or classifications that transcends particular 
illustration database and reflects human perception and 
cognition.  
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Fig. 6. Example of a query and its retrieval result using the benchmark by [2]. Illustrations with red dots indicate correct results for the query. C indicates the 

number of illustrations which belong to the same style category as the query. Our proposed FFV feature compressed down to 512 dimensions by KPCA 
produces better results than the other features. 


