
An Unsupervised Approach for Comparing Styles of Illustrations

Takahiko Furuya

Graduate School of Medicine and

Engineering

University of Yamanashi

Kofu, Japan

g13dm003@yamanashi.ac.jp

Shigeru Kuriyama

Department of Computer Science

and Engineering

Toyohashi University of

Technology

Toyohashi, Japan

sk@tut.jp

Ryutarou Ohbuchi

Graduate School of Medicine and

Engineering

University of Yamanashi

Kofu, Japan

ohbuchi@yamanashi.ac.jp

Abstract— In creating web pages, books, or presentation slides,

consistent use of tasteful visual style(s) is quite important. In this

paper, we consider the problem of style-based comparison and

retrieval of illustrations. In their pioneering work, Garces et al.

[2] proposed an algorithm for comparing illustrative style. The

algorithm uses supervised learning that relied on stylistic labels

present in a training dataset. In reality, obtaining such labels is

quite difficult. In this paper, we propose an unsupervised

approach to achieve accurate and efficient stylistic comparison

among illustrations. The proposed algorithm combines

heterogeneous local visual features extracted densely. These

features are aggregated into a feature vector per illustration

prior to be treated with distance metric learning based on

unsupervised dimension reduction for saliency and compactness.

Experimental evaluation of the proposed method by using

multiple benchmark datasets indicates that the proposed

method outperforms existing approaches.

Keywords- Local image feature, illustration style tag,

illustration style feature, unsupervised distance metric learning.

I. INTRODUCTION

Stock illustrations (or clipart) are used daily in web pages,
presentation slides, advertisement leaflets, and other media.
Some of these illustrations are provided for a fee, while others
are available for free, for example, as a part of a productivity
software license, or as a public-domain repository of
illustrations. Increasing number of such illustrations has
created a demand for easy-to-use and effective methods to
find illustrations users want.

Typically, a clipart collection is organized hierarchically,
by occasion, season, characteristic object included, etc. Or, it
may be searched. Search by keywords, however, requires
careful, consistent labeling of a large number of illustrations.
Certain clipart repository do offer search based on similarity
of illustrations. For example, Microsoft’s repository allows
you to find clip arts similar to the one you present.

A search for “similar” visual content may employ
techniques from well-studied content-based image search
algorithms (e.g., [1]). These algorithms compare images
mostly based on shape of objects contained in the image.
Other features, such as color and texture may also be
employed. For example, given an illustration of a human
figure, these algorithms would try to find illustrations
including human figure. But such a search may be less useful

if one wishes to find illustrations having the same artistic style
(e.g., black and white, silhouette, art-nouveau), but containing
different objects (e.g., an iris, instead of a woman).

Relatively small number of work exist that deal with
retrieval or recognition of illustrations or drawings. Most of
previous work in the area of illustration and/or drawing
retrieval focused on objects contained in, not style of, the
illustrations. Simple geometrical features and their topological
relationship are used for sketch-based retrieval of art work
[3][4] and technical drawings [5]. Features extracted from
vector representations of line drawings are used in these work.
In a more recent work on vector graphics clip art retrieval, [1]
used both vector graphic and image representations of an
illustration for feature extraction; color and texture features
are extracted from image representation, while topology and
geometry are extracted from vector graphic representation.

Garces et al. [2] introduced the algorithm for illustrative
style comparison that relies on supervised learning of labels.
The algorithm extracts multiple heterogeneous global image
features from each illustration. Using a set of illustrations
labelled with styles as the corpus, the algorithm then applies
supervised learning to produce refined similarities among
illustrations. Similar supervised approach has been taken by
Karayev, et al. [6] in an effort to recognize styles in
photographs. In reality, however, such supervised approaches
may have limited applicability. Only a very small subset of
illustrations is labeled with style tags. Furthermore, style tags
are not shared among existing collections. It is thus important
to develop an illustrative style descriptor that does not rely on
supervised learning employing stylistic labels.

In this paper, we propose a novel algorithm to derive style
descriptors for illustrations without relying on supervised
learning. The algorithm assumes, as its input, illustrations in
array-of-pixels representation. If the illustration is in vector
graphic representation (e.g., Scalable Vector Graphic (SVG)
format), it is converted into array-of-pixels format prior to
feature extraction. The algorithm then densely samples local
image features from a multi-resolution image pyramid
representation of the illustration. The local image features are
then aggregated into a feature vector per illustration, prior to
be treated with a dimension reduction algorithm that achieves
unsupervised distance metric learning of the illustration
feature space. An experimental evaluation using a pair of

benchmarks showed that our descriptor significantly
outperforms the one proposed in [2].

The rest of this paper is organized as follows. Section II
presents the proposed algorithm. Experiments and their results
are presented in Section III, followed by summary and
conclusion in Section IV.

II. ALGORITHM

A. Overview

Our proposed illustration style comparison algorithm has
two major attributes; use of local visual features and
unsupervised distance metric learning. Fig. 1 illustrates our
style similarity comparison algorithm.

The proposed algorithm characterizes a style of an
illustration by using a set of densely sampled, local, low-level,
statistical image features. This is different from an approach
by Garces et al. [2], which used heterogeneous set of global
image features. We combine two local features; Local Binary
Patterns (LBP) [7] to describe texture and HSV histogram
computed in Hue-Saturation-Value (HSV) color space. A set
of features, either of LBP or HSV, is densely extracted from
an image of illustration. The set of features is then aggregated
into a feature vector per image via Fisher Vector (FV)
aggregation [8]. FV is one of the best performing local feature
aggregation methods for image recognition [9]. As the FV
aggregation ignores position of each local feature, FV-
aggregated features have certain invariance to shape

deformation, a property desirable for comparison of
illustration styles (but not necessarily for certain type of object
recognition). The FV-aggregated LBP features, FV-LBP, and
FV-aggregated HSV features, FV-HSV, are then fused into a
single, high-dimensional (~18K dimensions) feature per
image by simple concatenation of the two feature vectors.

We then perform unsupervised dimensionality reduction
on the concatenated vector by using a combination of Kernel
PCA (KPCA) [10] and Laplacian Eigenmaps (LE) [11]. The
dimension reduction has two purposes; improving saliency of
the feature for better accuracy in style similarity comparison,
and improving computational efficiency of image-to-image
style comparison. To further reduce memory footprint for
large-scale retrieval, we quantize each element of the
dimension-reduced feature vector by using small dynamic
range integer representation.

B. Multi-Scale Local Feature Extraction

1) Texture feature
We employ LBP to describe texture of illustration. An

LBP is a histogram computed locally at a square Region-Of-
Interest (ROI) of image having size NR×NR. Experiments
below use NR=25 whose value is chosen based on preliminary
set of experiments. The histogram is generated from NR

2
integer values computed at every pixel in the ROI. The integer
value LBPp for a pixel p is computed as an 8 bit string, whose
range is [0, 255] for decimal notation, from a 3×3 pixel region
centered around p. NR

2 (e.g., 252=525) integer values are
accumulated into a histogram having 28=256 bins, and the
histogram is normalized by its L1 norm.

To make the original LBP feature more compact and more
robust against background and scale change of illustrations,
we add the following three modifications to the original LBP.
First, we exclude 8 bit strings whose number of bit changes
exceeds 5 from constructing the LBP histogram. This
modification reduces the number of bins for LBP histogram
from 256 to 28. Secondly, a pixel p is omitted from voting for
LBP histogram if differences of pixel values among p and its
neighbor pixels are less than 5. By this modification, image
regions having almost no textures, e.g., background of an
illustration, are excluded from LBP computation. Thirdly, we
extract multi-scale LBP for robustness against scale change of
illustration. Specifically, an input illustration is first resized so
that its longer side becomes 320 pixels. The resized image is
down-sampled twice to generate an image pyramid having
three layers, whose longer sides are 320, 160, and 80 pixels
respectively. For each layer, ROIs having size 25×25 pixels
are densely sampled at an interval of 8 pixels. We utilize
integral histogram [12] to efficiently compute LBP histograms
for ROIs.

2) Color feature
Our local HSV histogram has an overall dimensionality of

36, which is divided into 8, 10, and 18 bins, respectively, for
Hue (H), Saturation (S), and Value (V) components. ROIs for
HSV histograms are sampled in the same manner as for LBPs.
That is, ROIs with 25×25 pixels are densely sampled at every
8 pixels on three layers of an image pyramid. In HSV color
space, V component corresponds to gray-level intensity of an
image. As the V indirectly captures thickness of lines, shade,

Target

image
Query
image

Extract

local
features A set of

~1K
LBP

features Aggregate
by FV

FV-LBP
feature

(~7K dims.)

FV-HSV
feature

(~11K dims.)

A set of
~1K
HSV

features

Concatenate

to fuse two
FV features Fused FV (FFV)

feature
(~18K dims.) Reduce

dimensions

by KPCA

and LE
Dimension-reduced

FFV feature
(~100 dims.)

Compute

a distance

The distance between the query
and the retreival target illustration

Region-of-

Interest (ROI)

region

Fig. 1. Overview of our algorithm.

...

...

...
... ...

Multi-scale
image pyramid

region

or shadows, and density of lines etc., we give it more
quantization levels, i.e., 18, than the other two color
components. The HSV histogram is normalized by its L1
norm.

When we examine pixel values of illustration images
represented in HSV color space, we notice several
characteristics. Among illustration images, pixel values for S
and V components tend to fall in either lowest (0.0) or highest
(1.0) extremes of the range. This is not like images of natural
scenes in which pixel values in HSV color space is distributed
more evenly. We thus add two dedicated bins at the lowest
(0.0) and highest (1.0) values of S and V components, and
divide the rest of bins having uniform intervals. Also, value of
H component is unreliable if values of S or V are very small.
We thus omit pixels from histogram computation when
S < 0.02 or V < 0.02. As with LBP, we use integral histogram
for efficiently computing HSV histograms for ROIs.

C. Feature Aggregation

For each local feature (i.e., LBP or HSV), a codebook for

FV aggregation is learned by using Gaussian Mixture Model

(GMM) clustering performed on 250,000 local features

randomly selected from all the local features extracted from

the training set of images. We learn Nv=128 clusters, or

codewords. Dimensionality of an FV-aggregated feature

becomes 2×Nv×Nd for each image where Nd is the

dimensionality of local feature (Nd=28 for LBP and Nd=36 for

HSV). Therefore, FV-LBP vector has the dimension 7,168

and FV-HSV has the dimension 9,216.

After the aggregation, the FV-aggregated feature goes

through power-normalization followed by L2 normalization,

as in [8]. Power normalization defined in (1) is applied to the

FV-aggregated feature f;

() | |f sign f f (1)

We use α=0.3 for FV-LBP and α=0.1 for FV-HSV.
Finally, the FV-LBP and FV-HSV vectors, both of which

are power normalized and then L2-normalized, are

concatenated. The concatenated vector is then normalized by

its L2-norm to become raw Fused FV (FFV) illustration style

feature vector. The raw FFV feature vector has

dimensionality of ND=7,168+9,216=18,432 before the

unsupervised similarity metric learning involving dimension

reduction described in the next section.

D. Unsupervised Similarity Metric Learning

To improve accuracy and efficiency of image-to-image
style comparison, we perform unsupervised dimensionality
reduction on the FFV features by using KPCA and LE. For
both KPCA and LE, we use all the illustrations (NI =4,591) in
the database for learning improved similarity metric. We use
KPCA with dot kernel, which linearly project a high
dimensional (i.e., ND =~18K dims.) FFV vectors onto a lower
dimensional (e.g., NK =512 dims.) subspace.

In an attempt to further improve retrieval accuracy, the
KPCA-projected FFV features are projected onto a lower
dimensional (e.g., NL =128 dims.) by using LE. LE finds non-
linear projection onto a subspace where diffusion distance in

the original feature space is preserved as L2 (or Cosine)
distance. LE-projected FFV features are compared by using
Cosine similarity to generate retrieval results.

E. Quantization

Dimensionality reduction described above produces more
compact FFV features (e.g., 128 dims.) than raw FFV features
(e.g., 18,432 dims.). Memory footprint of dimension-reduced
FFV feature is still significant, as it is real-valued; assuming
4 Byte floating point representation, a 128-dimensional FFV
descriptor occupies 4×128=512 Byte per illustration. We try
to reduce its memory footprint further by using quantized,
small dynamic range integer representation for each element
of the vector. To efficiently handle a large scale dataset, small
memory footprint is essential.

We try a simple approach, which is to represent each
element of dimension-reduced FFV descriptor by using small
dynamic range integer. A set of feature vectors processed by
KPCA and LE tend to distribute around the origin of its
feature space [13]. This “sphered” distribution of the
dimension-reduced features is discretized by using the
following method. The floating point value fd of d-th
dimension of the FFV feature vector is converted into an
integer value id having 2n quantization levels whose range is

1 1[2 ,2 1]n n

nR     by using the following equation,

1round 2
3

n d

di


 
  

 

f
 (2)

where round() denotes a rounding function and the standard
deviation σ is computed with respect to all dimensions of all
the FFV features. If id produced by (2) is out of the range Rn,
it is clipped to its boundary values. Using the standard
deviation σ makes the discretization somewhat robust against
outliers. If we use n=8, that is, 28=256 quantization levels, a
feature vector would occupy 128 Byte per illustration.

III. EXPERIMENTAL EVALUATION

A. Benchmark database

To evaluate effectiveness of the proposed algorithm, we
use the benchmark dataset supplied by Garces et al. [2]. This
dataset contains 4,591 illustrations with a wide range of styles.
Fig. 2 shows examples of illustrations in the dataset. Out of
the 4,591 illustrations, a set of 1,000 samples, which we call
“MTurk”, were collected from the Art Explosion dataset [15]
and a set of 3,591 samples, which we call “MS”, were
collected from a set of clipart included in the Microsoft Office.
The set of 4,591 samples is divided into two subsets, i.e., a
train set for supervised learning and a test set for evaluation.
Since our algorithm is fully unsupervised, i.e., no labels are
required, we use all the images in the benchmark to learn a
codebook for FV aggregation and to learn a subspace for
dimensionality reduction.

We use two evaluation protocols. The first protocol is
called triplet testing which was used in [2]. Given a triplet of
three illustrations aI , bI and cI , where aI has more similar
style to bI than to cI , a triplet test is considered as success if

bI is ranked higher than cI in the retrieval result for the query

.aI Accuracy of the triplet testing is a success rate obtained
through 10,633 triplet tests.

As the second evaluation protocol, we use mean Average
Precision (mAP). To compute mAP, we use the set of 3,591
images in the MS dataset that has label information. The set
of 1,000 images in the MTurk dataset is used as distracter, that
is, they are considered as incorrect in the retrieval results.

Style_266 Style_1090

Style_1266 Style_1294

Fig. 2. Examples of illustrations from a benchmark dataset used in [2].

B. Effectivness of Similarity Metric Learning

Fig. 3 shows effectiveness of dimension reduction of FFV
feature, where “FFV” plots the accuracy of raw FFV feature
without reduction. “FFV (KPCA)” and “FFV (KPCA+LE)”
plot the accuracy of FFV feature projected onto a lower
dimensional space, where the latter method first project a raw
feature vector onto 512-dimensional sub-space with KPCA
and the dimension is further reduced by LE. We can observe
that these dimensionality reductions significantly improve
retrieval accuracy. “FFV (KPCA)” with 256 dimensions
increases mAP score by about 0.04 compared to “FFV”. “FFV
(KPCA+LE)”, which captures non-linearity of the feature
distribution, achieves higher accuracy by mAP=0.63 with 128
dimensions.

Dimensionality reduction significantly accelerates
distance computation among FFV features. The 128-
dimensional FFV feature compressed by KPCA takes only
about 0.002 seconds for computing distances between the
query and the 4,591 images in the dataset. On the other hand,
the raw 18,432-dimensional FFV feature is more time-
consuming; it takes about 0.057 seconds for computing
distances. For a larger-scale dataset, e.g., that having 100K
illustrations, the compact (e.g., 128-dimensional) feature
would be essential for interactive retrieval. The computation
times above were measured by using a single thread code run
on a PC having two Intel Xeon E5-2650V2 CPUs and
256 GByte of DRAM.

C. Training Set Size and Retrieval Accuracy

In the experiments above, we used all the 4,591 images
contained in the benchmark dataset for unsupervised learning,
i.e., codebook learning for FV aggregation and subspace
learning for dimensionality reduction. In this section, we
evaluate the influence of the number of training images on the
retrieval accuracy. We randomly select Nt samples from the
set of 4,591 images for learning. We run the experiment 5
times and the average of mAP scores is used for evaluation.

Fig. 4 plots retrieval accuracy against the number of
training samples Nt. “FV-LBP”, “FV-HSV”, and “FFV” use
Nt images only for learning the codebook for FV aggregation.
Meanwhile, “FFV (KPCA)” and “FFV (KPCA+LE)” use Nt
images for both codebook learning and subspace learning. In
Fig. 4, for “FV-LBP”, “FV-HSV”, and “FFV”, mAP scores
nearly unchanged for all the Nt we have experimented. We can
confirm that the codebook learning for FV aggregation is
insensitive to the number of training samples, whereas KPCA
and LE are more sensitive to. Accuracies for “FFV (KPCA)”
and “FFV (KPCA+LE)” significantly decrease at lower Nt,
especially for the latter. It is noteworthy that dimensionality
reduction such as KPCA and LE require sufficient number of
training samples for finding appropriate subspaces.

Fig.3. Reduced feature dimension and retrieval accuracy (mAP).

Fig. 4. Training dataset size and retrieval accuracy (mAP).

D. Quantization Levels and Retrieval Accuracy

Here we evaluate the impact FFV feature quantization has
on retrieval accuracy. Fig. 5 plots retrieval accuracies against
the number of levels for quantization, where we set the
dimensionalities of FFV(KPCA) and FFV(KPCA+LE) at 128.
For both FFV(KPCA) and FFV(KPCA+LE), quantization
with 64 levels retains retrieval accuracy of FFV features
without quantization. The feature vector quantized by using

64 levels (i.e., 6 bits) occupies 96 Bytes (6bits 128 / 8)  per

image. About 10K such descriptor would easily fit in a 2nd (or
3rd) level cache of a contemporary CPU for an efficient on-
cache processing.

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000

m
A

P

Number of dimensions

FFV (18,432dims.)

FFV (KPCA)

FFV (KPCA+LE)

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000 5000

m
A

P

Number of training images Nt

FV-LBP FV-HSV

FFV FFV (KPCA)

FFV (KPCA+LE)

Fig. 5. Quantization levels and retrieval accuracy (mAP).

E. Comparison with the other Features

In this section, we compare retrieval accuracy of our FFV
feature with two other algorithms. First algorithm to be
compared against is the one by Garces et al. [2]. It uses four
global feature vectors, i.e., color, shading, texture, and stroke,
extracted from each illustration. Distance between a pair of
features is computed by using supervised distance metric
learning. It uses a “weak” form of supervision based on human
annotation of style similarity presented with a triplet of
illustrations. The second algorithm, which we call FV-DSIFT,
uses densely sampled SIFT feature [14] aggregated by using
FV aggregation [8]. FV-DSIFT is used widely in image object
recognition task. For the FV-DSIFT, we densely extracts
1,200 SIFT features having random scales and random
positions from an illustration. The set of SIFT features is
aggregated by FV into a per-image feature vector for
comparison. We use the codebook of size Nv=64 for FV-
DSIFT. Note that both proposed FFV feature and the
algorithm by Garces (Baseline) employ color information
extracted from HSV set of images as well as shape/texture
feature extracted from an intensity image. FV-DSIFT, on the
other hand, only uses shape/texture feature extracted from
intensity image.

Table I compares the retrieval accuracies of our FFV
feature against the other ones. The performance of our FFV
(mAP=0.58) significantly outperforms the baseline
(mAP=0.36). Non-linear dimensionality reduction by LE,
denoted by FFV (KPCA+LE), achieves further improves
(mAP=0.63), which is the highest score we have obtained
through the experiments. Lowest accuracy of the FV-DSIFT
suggests that the lack of color information negatively impacts
retrieval accuracy.

The baseline algorithm shows high accuracy if evaluated
by using triplet testing, especially for the MTurk dataset.
However, its mAP score is lower than that of the FFV. We
speculate that this is a result of overfitting of the baseline
algorithm to supervision provided by triplets of the MTurk
dataset. The triplets of the MTurk dataset, which were
obtained via crowd-sourcing, is influenced by subjective
criteria of multiple individuals. These sets of criteria are
inherently different from the set of tags used in the MS dataset.
Overfitting the MTurk dataset would result in a higher

accuracy for the MTruk dataset but a lower accuracy for the
MS dataset.

Fig. 6 shows an example of a query and its retrieval result
using the baseline (supervised), FV-DSIFT, and FFV, which
demonstrates the superiority of our feature over the other ones.
We can observe that the proposed FFV feature retrieves
illustrations having different objects and colors but having
similar style to the query.

Table I. Style comparison algorithms and retrieval accuracy (mAP).

Algorithms
Accuracy on triplet test

mAP
MTurk MS

Baseline (supervised)[2] 0.82 0.95 0.36

Baseline (unsupervised)[2] 0.75 0.94 0.39

FV-DSIFT [19] 0.65 0.89 0.29

FFV (KPCA) 0.77 0.98 0.58

FFV (KPCA+LE) 0.64 0.94 0.62

F. Scalability

To evaluate the scalability of our proposed algorithm, we
performed the experiments by using datasets with larger
number of images than the MTurk+MS dataset [2]. We
created three larger-scale datasets by adding distractor images
to the MTurk+MS dataset from other clipart repositories. The
first dataset is “MTurk+MS+AE(10K)” having 10,000 images.
It is a union of the set of 4,591 images of the MTurk+MS
dataset and the set of 5,409 distractor images randomly
selected from the Art Explosion dataset [15]. The second and
the third datasets are “MS+OC(5K)” having 5,000 images and
“MS+OC(10K)” having 10,000 images. They were created by
adding 1,409 or 6,409 distractor images randomly selected
from the openclipart repository [16] to 3,591 images of the
MS dataset. As with evaluation using the MTruk+MS dataset,
retrieval accuracies for these three “inflated” datasets are
evaluated by using labeled images of the MS dataset and the
other distractor images are considered as incorrect in the
retrieval results.

Table II summarizes retrieval accuracies for the three
larger-scale datasets. In the table, elements of both
FFV(KPCA) and FFV(KPCA+LE) feature vectors are
quantized to 64 levels after dimension reduction . Retrieval
accuracies for the larger-scale dataset are lower than that for
the (smaller) MTurk+MS dataset. This is expected, since these
three larger-scale datasets contains more distractor images
than the MTurk+MS dataset. Nevertheless, retrieval
accuracies in Table II for larger scale datasets are still
reasonably good as mAP scores for both FFV(KPCA) and
FFV(KPCA+LE) are over 0.5.

Table II. Retrieval accuracies (mAP) for larger-scale datasets.

Features
MTurk

+MS (5K)
MTurk+MS
+AE (10K)

MS
+OC (5K)

MS
+OC (10K)

FFV(KPCA) 0.58 0.53 0.56 0.53

FFV(KPCA+LE) 0.62 0.58 0.59 0.58

IV. CONCLUSION AND DISCUSSION

This paper proposed and evaluated a novel style-based
image retrieval algorithm for illustrations. The image
descriptor proposed, Fused Fisher Vector (FFV), has two

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 8 16 32 64 128 256 512 1024

m
A

P

Quantization levels

FFV(KPCA) quant.

FFV(KPCA+LE) quant.

FFV(KPCA)

FFV(KPCA+LE)

major attributes; densely sampled local visual features and
unsupervised distance metric learning. An illustration is
represented by a set of texture-based local features and a set
of color-based local features. Each set is aggregated into a
feature vector per image by using Fisher Vector (FV) [8].

A style feature vector per illustrations, called (raw) Fused
Fisher Vector (FFV), is produced by concatenating the two
aggregated features. For efficacy and efficiency in
comparison, unsupervised distance metric learning via a
combination of Kernel PCA and Laplacian Eigenmaps is
performed on raw FFV, followed by small dynamic range
(e.g., 6 bit) quantization of each element of the vector.

An experimental evaluation using multiple benchmark
datasets showed that our proposed algorithm is more accurate
in comparing illustration styles than the algorithm proposed in
[2]. Memory footprint of our illustration style descriptor is
small enough (e.g., 96 Bytes per illustration) so that a large
scale style-based illustration retrieval system is practical.

Multiple avenues for future exploration remain. Obviously,
we want to further improve accuracy and efficiency of
descriptor for illustration style comparison. For example, deep
neural network trained on a set of illustrations, instead of
photographic images [6], might yield a better descriptor tuned
to illustrations. It would also be interesting to develop a set of
style tags or classifications that transcends particular
illustration database and reflects human perception and
cognition.

ACKNOWLEDGEMENT

REFERENCES

[1] P. Martins, R. Jesus, M. Fonseca, and N. Correia, “Clip art retrieval
combining raster and vector methods,” in Content- Based Multimedia
Indexing (CBMI), June 2013, pp. 35–40.

[2] E. Garces, A. Agarwala, D. Gutierrez, and A. Hertzmann, “A similarity
measure for illustration style,” ACM Transactions on Graphics
(SIGGRAPH 2014), vol. 33, no. 4, 2014.

[3] M. F. Barroso, M. J. Fonseca, B. Barroso, P. Ribeiro, and J. A. Jorge,
“Retrieving clipart images by content,” in Proceedings of the 3rd
International Conference on Image and Video Retrieval (CIVR `04),
LNCS, 2004.

[4] P. Sousa and M. J. Fonseca, “Geometric matching for clip-art drawing
retrieval,” J. Vis. Commun. Image Represent., vol. 20, no. 2, pp. 71–83,
Feb. 2009.

[5] M. J. Fonseca, A. Ferreira, and J. A. Jorge, “Sketch-based retrieval of
complex drawings using hierarchical topology and geometry,”
Computer-Aided Design, Volume 41, Issue 12, December 2009, Pages
1067–1081

[6] S. Karayev, A. Hertzmann, M. Trentacoste, H. Han, H. Winnemoeller,
A. Agarwala, and T. Darrell, “Recognizing image style,” in
BMVC2014, 2014.

[7] T. Ojala, M. Pietikäinen, and T. Mäenpää, (2002), “Multiresolution
gray-scale and rotation invariant texture classification with local binary
patterns,” IEEE Trans. PAMI, 24(7), 971–987.

[8] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in Proceedings of the 11th
European Conference on Computer Vision: Part IV, ser. ECCV’10,
2010, pp. 143–156.

[9] A. V. Ken Chatfield, Victor Lempitsky and A. Zisserman, “The devil
is in the details: an evaluation of recent feature encoding methods,” in
Proceedings of the British Machine Vision Conference, 2011, pp. 76.1–
76.12.

[10] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, no.
5, pp. 1299–1319, Jul. 1998.

[11] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6, pp.
1373–1396, Jun. 2003.

[12] F. Porikli, “Integral histogram: a fast way to extract histograms in
cartesian spaces,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 1, June 2005,
pp. 829–836 vol. 1.

[13] L. Saul, K. Weinberger, J. Ham, F. Sha, and D. Lee, Spectral Methods
for Dimensionality Reduction. MIT Press, 2006.

[14] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov.
2004.

[15] Nova Development, http://www.novadevelopment.com

[16] Openclipart, https://openclipart.org

Query

C=25

Garces et al.

 [2]

FV-DSIFT [14]

FFV (KPCA)

Fig. 6. Example of a query and its retrieval result using the benchmark by [2]. Illustrations with red dots indicate correct results for the query. C indicates the

number of illustrations which belong to the same style category as the query. Our proposed FFV feature compressed down to 512 dimensions by KPCA
produces better results than the other features.

